Archive | Imaggeo RSS feed for this section

Imaggeo on Mondays: Beneath a star-studded sky

4 Aug

Marco Matteucci captured this image of the night sky on the slopes of Mount Rosa, the second tallest peak in Alps. Mount Rosa straddles the border between southern Switzerland and Italy the pink mountain’s name comes from the Franco-Provençal word rouése, meaning glacier. Much off the Swiss side of the mountain is enveloped in the ice of Gorner Glacier, the second largest glacier in the Alps. On the Italian side, lies Belvedere Glacier, which is fed by the snow that falls on Mount Rosa.

Mount Rosa ridge, Valle d'Aosta, Italy. (Credit: Marco Matteucci via imaggeo.egu.eu)

Mount Rosa ridge, Valle d’Aosta, Italy. (Credit: Marco Matteucci via imaggeo.egu.eu)

Wish you could capture images like this yourself? You can! Take a look at this brief guide to space photography for some hints and tips. 

Imaggeo is the EGU’s open access geosciences image repository. Photos uploaded to Imaggeo can be used by scientists, the press and the public provided the original author is credited. Photographers also retain full rights of use, as Imaggeo images are licensed and distributed by the EGU under a Creative Commons licence. You can submit your photos here.

Imaggeo on Mondays: Spectacular splatter – the marvels of a mud volcano

28 Jul

Mud volcanoes, unlike many others, do not extrude lava. Instead, they release glutinous bubbling brown slurry of mineral-rich water and sediment. They range in size from several kilometres across, to less than a metre – the little ones are known as mud pots, reflecting their diminutive nature. The world’s largest, though, is Lusi: a mud volcano in East Java that released an astonishing 180,000 cubic metres of fluid each day during the peak of its 2006 eruption. It’s likely to continue erupting for another 26 years!

Much of the gas that bubbles up through these muddy pools is methane, though the exact mix of gasses varies from site to site and is tied to other geological activity in the region, with those close to igneous volcanoes often releasing less methane than those associated with clathrate deposits. Small bubbles of gas can coalesce to form a much larger one, which, on reaching the surface, bursts and sends flecks of clayey fluid asunder, just as they do here:

The sediment-rich spatter from a bubbling mud volcano. (Credit: Tobias Heckmann via imaggeo.egu.eu)

The sediment-rich spatter from a bubbling mud volcano. (Credit: Tobias Heckmann via imaggeo.egu.eu)

By Sara Mynott, EGU Communications Officer

Imaggeo is the EGU’s open access geosciences image repository. Photos uploaded to Imaggeo can be used by scientists, the press and the public provided the original author is credited. Photographers also retain full rights of use, as Imaggeo images are licensed and distributed by the EGU under a Creative Commons licence. You can submit your photos here.

 

Imaggeo on Mondays: Entering a frozen world

21 Jul

Dmitry Vlasov, a PhD Student and junior scientist from Lomonosov Moscow State University, brings us this week’s Imaggeo on Mondays. He shares his experience of taking part in a student scientific society expedition to Lake Baikal.

This picture shows icy shores of Lake Baikal – a UNESCO World Heritage Site and the world’s largest natural freshwater reservoir (containing about one fifth of Earth’s unfrozen surface freshwater). It is also the deepest lake on our planet (1,642 m).

The icy shores of Lake Baikal. (Credit: Dmitry Vlasov, via imaggeo.egu.eu)

The icy shores of Lake Baikal. (Credit: Dmitry Vlasov, via imaggeo.egu.eu)

The aim of the expedition was to do an eco-geochemical assessment of the environment in and around Ulan-Ude (the capital of Republic of Buryatia). Snow samples were collected all around the city to determine their chemical composition and the concentrations of different chemical elements present in the snowpack. We also studied the isotopic composition of snow to help find the sites where air masses form.

Weather-wise, we were lucky – according to locals this winter was a warm and snowy one. The temperature was (only!) -25 to -33 degrees Celsius. Times were tough when strong, cold and piercing winds froze our hands and faces.

To find out the impact of transport and industry on the snow’s chemical composition within the city, we took background snow samples at different distances and in and around it. One such area was set to the northeast of the city, close to the Turka and Goryachinsk settlements across the notch from Ulan-Ude. This photo was taken in that exact spot. It took about 2.5 hours to make the 170 km journey from Ulan-Ude by car, but we didn’t regret it. The scenery was amazing! The cover of ice over the lake sparkled bright blue, despite being exceptionally transparent. Because of the water’s choppy nature, ice on the Lake Baikal often cracks and billows to form a chain of miniature ice mountains, alternated with relatively smooth ice plains. I’d never seen anything like this before.

All the participants were very excited about expedition – it showed the students different sides of scientific life: work in rather hard weather conditions, analytical lab studies, route planning and of course the breathtaking beauty and outstanding power of nature.

By Dmitry Vlasov, PhD Student and junior scientist, Lomonosov Moscow State University

Acknowledgement:

The expedition was carried out with the financial support of the Russian Geographical Society and the Russian Foundation for Basic Research (project № 13-05-41191 and project RGS “Complex Expedition Selenga-Baikal”).

Imaggeo is the EGU’s open access geosciences image repository. Photos uploaded to Imaggeo can be used by scientists, the press and the public provided the original author is credited. Photographers also retain full rights of use, as Imaggeo images are licensed and distributed by the EGU under a Creative Commons licence. You can submit your photos here.

Imaggeo on Mondays: The most powerful waterfall in Europe

14 Jul

On the menu this Monday is the opportunity to indulge in some incredible Icelandic geology. Take a look at a tremendous waterfall and the beautiful basalt it cuts through…

Iceland is famous for its striking landscapes, from fiery volcanoes and fields of basalt to violent geysers and pools of the most fantastic blue. One of the country’s many geological gems is Dettifoss waterfall – a 100-metre-high mass of white, tumbling water within Vatnajökull National Park.

With about 200 cubic metres of water falling each second, Dettifoss is widely reported to be the most powerful waterfall in Europe. It certainly looks the part.

Dettifoss waterfall, Iceland (Credit: Neil Davies, via imaggeo.egu.eu)

Dettifoss waterfall, Iceland (Credit: Neil Davies, via imaggeo.egu.eu)

Dettifoss is fed by melt from the Vatna Glacier (Vatnajökull), and the spring spike in meltwater means the fall’s flow can reach some 1500 cubic metres per second. By putting your hand to the rocks beside the fall you can feel the thundering torrents as the basalt vibrates beneath your fingertips.

The Jökulsá river snakes through the park’s volcanic canyons, which are constantly being cut by the erosive force of the fall. Dettifoss isn’t the only great feature in this photo though: the canyon walls are layered with lava flows that – even at a glance – reveal when they were deposited. The relatively smooth deposit at the base of the wall and the thinner skin of smooth basalt in the middle are the product of interglacial eruptions. The two rough, blocky-looking layers are columnar basalt deposits – a feature that forms when lava meets ice and cools so rapidly that it fractures into long, hexagonal columns.

Dettifoss up close. (Credit: Roger McLassus)

Dettifoss up close. (Credit: Roger McLassus)

For many geoscientists, Iceland is the top spot on the geological destination list. If you went to Iceland, where would you go? Been before? Tell the tale. We’d love to hear from you.

By Sara Mynott, EGU Communications Officer

Reference:

Bamlett, M., and Potter, J. F.: Icelandic geology: an explanatory excursion guide based on a 1986 Field Meeting. Proceedings of the Geologists’ Association 99.3, 221-248, 1988.

Imaggeo is the EGU’s open access geosciences image repository. Photos uploaded to Imaggeo can be used by scientists, the press and the public provided the original author is credited. Photographers also retain full rights of use, as Imaggeo images are licensed and distributed by the EGU under a Creative Commons licence. You can submit your photos here.

Follow

Get every new post on this blog delivered to your Inbox.

Join other followers: